Modified Constraint-Induced Therapies: An Introduction

Steve Page, OTR/L, PhD, MS, MOT

SPage@neurorecovery.net

www.StevePRehab.com

@StevePRehab StevePRehab

1

Learning Objectives

- 1. Identify the components comprising constraint induced therapy (CIT) for the upper extremity
- 2. Identify possible methods for constraint induced therapy (CIT) of the lower extremity
- 3. Describe the criteria necessary for a stroke survivor to qualify for constraint induced therapy (CIT) for the upper extremity
- 4. Describe the criteria necessary for a stroke survivor to qualify for constraint induced therapy (CIT) for the lower extremity

2

If you are a stroke patient...

...which UE would you use to reach (more versus less affected)?

...on which LE would you be more likely to weightbear (more versus less affected)?

Less affected:

Learned Nonuse (UE)/Misuse (LE) Operant conditioning

- Success/punishment-operant conditioning
- -therapy/compensation

https://musculoskeletalkey.com/orthotic-decision-making-in-neurological-and-neuromuscular-disease/

Constraint-induced movement therapy for the upper extremity

- Components to induce repeated practice with the affected UE include:
 - 6 hour training sessions on 10 consecutive weekdays
 - Forced use of UE during all waking hours
 - Behavioral contract)
 - · Treatment diary
- Increases more affected UE use & function in subacute & chronic stroke pts.

4

Constraint-induced movement therapy for the lower extremity

Encourages use/integration of both LE's

3 hours/day of clinical time for 10 consec. days 30 second trials KR after each performance (e.g., how many; how high)

No restraint device (some have used knee immobilizer)

Complexity level of the shaping task should be set at just beyond what the participant can easily accomplish

5

Other LE CIT Variants

https://www.rehab.research.va.gov/jour/00/37/1/aruin.htm

Other LE CIT variants

Effects of constraint-induced movement therapy for lower limbs on measurements of functional mobility and postural balance in subjects with stroke: a randomized controlled trial.

E Silva EMGS ^{1 ©} , Ribeiro TS	o, da Silva TCC1.	Costa MFP1 @	Cavalcanti FADC ¹⁰
Lindquist ARR ¹			

Tonics in Stroke Rehabilitation 30 Aug 2017 24(8) 555-561

Treadmill with "load" (equivalent to 5% of body weight) to "restrain" the less affected ankle

10 consecutive days; 30 mins/session

Improved BERG and TUG (clinically significant)

7

The UE: Lots and lots of studies support "Lots and lots of practice"

Author/ PEDro Score	Intervention	Intensity/Duration	Main Outcome(s) Result
Taub et al. 1993 6 (RCT)	Unaffected upper extremity restrained in a sling + practice using impaired upper extremity (n=4) vs. procedures designed to focus attention use of impaired upper extremity (control) (n=5).	6 hrs/day x 5 days/wk x 2 wks 6 hrs/day x 5 days/wk x	Emory Test (+ at end of treatment and 2 yr) Arm Motor Activity Rest test (+ at end of treatment and 2 yr) Motor Activity Log (+ increase in ability to use affected upper extremity) Action Descents Arm
Lee et al. 1999 7 (RCT)	therapy + immobilization of the unaffected arm (n=33) vs. intensive bimanual training based on NDT (n=33)	2 wks	(+ at end of treatment) Motor Activity Log (+ during treatment)
Sterr et al. 2002 4 (RCT)	Longer CIMT + 'shaping procedure' (n=7) vs. shorter CIMT + 'shaping procedure' (n=8)	6 hrs/day for a target of 90% of waking time or 3hrs/day x 2 wks.	Motor Activity Log (+ after treatment and at weekly follow-up for 4 wks) Wolf Motor Function Test (+ after treatment and at weekly follow-up for 4 wks)
Ploughman & Corbett 2005 5 (RCT)	Forced-use therapy + conventional rehab (n=10) vs. conventional rehab only (n=13)	Intervention group patients were a thick mitten on unaffected hand beginning with 1 hr/day progressing up to 6 hrs/day for length of inpatient stay.	Action Research Arm (+ at end of treatment) Chedoke-McMaster Impairment Inventory (postural component) (+ at end of treatment)
Wittenberg et al. 2003 USA 5 (RCT)	Intense CIMT (n=9) vs. less intense CIMT (n=7)	6 hrs/day (4hrs on weekends) or 3 hrs/day on weekdays only) x 10 days	Motor Activity Log (+) Wolf Motor Function Test (-) Assessment of Motor and Process Skills (-) (All at end of therapy)
Suputtitada et al. 2004 6 (RCT)	CIMT (n=33) vs. bimanual-upper-extremity training based on NDT approach (n=36) vs.	6 hrs/day x 5 days/wk x 14 days or daily weekday therapy for an unspecified time for 2 weeks	Action Research Arm (+) Pinch test (+)

Teasell; EBRSR

8

The LE: Research Support

- Aruin AS, Hanke T, Chaudhuri G, Harvey R, Rao N. Compelled weightbearing in persons with hemiparesis following stroke: the effect of a lift insert and goal-directed balance exercise. J Rehabil Res Dev. 2000;37:65-72
- Bonnyaud C, Pradon D, Zory R, et al. Effects of a gait training session combined with a mass on the non-paretic lower limb on locomotion of hemiparetic patients: A randomized controlled dinical trial. *Gort Posture*. 2013;37:627-63
- Marklund I, Klässbo M. Effects of lower limb intensive mass practice in poststroke patients: single-subject experimental design with long-term follow-up. Clin Rehabil. 2006;20:568-576.
 Rodriguez GM, Aruin AS. The effect of shoe wedges and lifts on symmetry of stance and weight bearing in hemiparetic individuals. Arch Phys Med Rehabil. 2002;83:478-482.
- Ding Q, Stevenson IH, Wang N, et al. Motion games improve balance control in stroke survivors: a preliminary study based on the principle of constraint-induced movement therapy. Displays. 2013;34:125-131.

CIT (UE + LE)

10

But are we <u>really</u> here yet?

11

Time for a little restraint? Concerns & experiences...

Modified constraint-induced therapy: Translating "preclinical research" to care

- \bullet Therapy 3 times/week for ½ an hour
- Practice with the more affected arm for 5 hours/day 5 days/week
- Behavioral techniques (log, shaping)
- ✓ Reimbursement (acute and OP)
- ✓ More UE reps → more opportunity for operant conditioning
- ✓ Distributed practice schedule

13

How much movement is needed to start mCIT for the UE/LE?

14

LE inclusion criteria

- Able to walk independently by 10 feet on flat surface without the use of assistive devices (ref below) OR
- •Able to walk at least 25 feet using an assistive device or not, at least three times a day (Taub laboratory);

e Silva EMG de S, et al. Top Stroke Rehabil. 2017;24:555-561

N 4 : :		C-:+:
Minimum	iviotor	Criteria

 Extension of the hemi wrist greater than 10°

2. Some active ABDuction of the carpal metacarpal joint of the thumb

3. 10° of active extension in, at least, 2 additional digits.

(Should be able to do the movement 3x in 1 min.)

16

• If this Pt. started in a fist...

...and ended up like this

...would they qualify for mCIT? Yes. Upstream changes too????

17

Behavior contract

- Therapy
 - \bullet Set up therapy schedule, location, and what happens during $\ensuremath{\mathsf{tx}}$
 - Patient expectations for attendance, advanced notice of missing sessions
 - Patient bring sling/mitt (UE)
 - · Achieve safety while at home
- Home exercise/ "homework"
 - Schedule, example activities/exercises
- Establish:
 - \bullet activities to be done independently by the participant
 - activities to be done with the supervision and/or help of a caregiver
 - activities **not** to be done for safety reasons.

Picking the Tasks...

Tasks should be one or more of the following:

- Important to the patient (motivating)
- Challenging Fun, interesting, engaging
- · Necessary (feeding)
- We use the COPM & MAL
- Pt is regularly assessed; progressed in task difficulty when he/she can perform deficient component 70-80% of time

19

Items to ask the care partner (put in treatment notes)

- What types of things does he/she like to do?
- What are 6 specific activities that he she really enjoys?
- When doing an activity or hobby, does he/she like to do it alone or with others?
- Are there specific activities where he/she prefers to be alone? How about activities where he/she prefers not to have someone watch him/her?
- What time of day is he/she typically most active?
- In what environments does he/she spend most of his/her time? In what rooms of the house?

20

- OK, you've given me some great answers so far. Now I want to ask about what helps him/her perform the activity better.
- During the activity,
 - what does the person like to hear when performing activities?
 - Like to see?
 - Like others to say? Like others to do?
 - Prefer to compete with others (norms) or him/herself (stopwatch, video)?
- When the activity has just finished:
 - what does the person like to hear when he/she is finished?
 - Like to see?
 - Like others to say? Like others to do?
 - What kind of feedback helps? Hurts? Frustrates? Upsets? Motivates? Excites?

What about the "constraint?"

What does the client need as a reminder?

22

23

25

Keep your hands off (as much as possible)

- We discourage facilitation
 - Most pts don't really need it due to their high level
 - You're trying to induce pt to attempt movements with affected UE
 - Learning is always initially ugly but gets better later as you correct and shape.
 - Boylestein the social arrangement of CIT

26

Thank-you

Spage@neurorecovery.net

